Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Sediment erosion, transport, and deposition by glaciers and ice sheets play crucial roles in shaping landscapes, provide important nutrients to downstream ecosystems, and preserve key indicators of past climate conditions in the geologic record. While previous work has quantified sediment fluxes from subglacial meltwater, we also observe sediment entrained within basal ice, transported by the flow of the glacier itself. However, the formation and evolution of these debris‐rich ice layers remains poorly understood and rarely represented in landscape evolution models. Here, we identify a characteristic sequence of basal ice layers at Mendenhall Glacier, Alaska. We develop a numerical model of frozen fringe and regelation processes that describes the co‐evolution of this sequence and explore the sensitivity of the model to key properties of the subglacial sedimentary system, using the Instructed Glacier Model to parameterize ice dynamics. Then, we run numerical simulations over the spatial extent of Mendenhall Glacier, showing that the sediment transport model can predict the observed basal ice stratigraphy at the glacier's terminus. From the model results, we estimate basal ice layers transport between 23,300 and 39,800 of sediment, mostly entrained in the lowermost ice layers nearest to the bed, maximized by high effective pressures and slow, convergent flow fields. Overall, our results highlight the role of basal sediment entrainment in delivering eroded material to the glacier terminus and indicate that this process should not be ignored in broader models of landscape evolution.more » « less
- 
            This dataset describes the chemical composition of water samples collected from the Canning River, Alaska from 2021-2024. Samples were collected from various locations throughout the catchment, spanning the headwaters in the Brooks Range to the coastal plain near the Beaufort Sea. The purpose of these data are to understand the spatial and temporal patterns of water chemistry changes as they are related to chemical weathering, organic carbon mobilization, and permafrost processes.more » « less
- 
            Beddoe, Riley; Karunaratne, Kumari (Ed.)Permafrost holds more than twice the amount of carbon currently in the atmosphere, but this large carbon reservoir is vulnerable to thaw and erosion under a rapidly changing Arctic climate. Convective storms are becoming increasingly common during Arctic summers and can amplify runoff and erosion. These extreme events, in concert with active layer deepening, may accelerate carbon loss from the Arctic landscape. However, we lack measurements of carbon fluxes during these events. Rivers are sensitive to physical, chemical, and hydrological perturbations, and thus are excellent systems for studying landscape responses to thunderstorms. We present observations from the Canning River, Alaska, which drains the northern Brooks Range and flows across a continuous permafrost landscape to the Beaufort Sea. During summer 2022 and 2023 field campaigns, we opportunistically monitored river discharge, sediment, and organic carbon fluxes during several thunderstorms. During one notable storm, river discharge nearly doubled from ~130 m3/s to ~240 m3/s, suspended sediment flux increased 70-fold, and the particulate organic carbon (POC) flux increased 90-fold relative to non-storm conditions. Taken together, the river exported ~16 metric tons of POC over one hour of this sustained event, not including the additional flux of woody debris. Furthermore, the dissolved organic carbon (DOC) flux nearly doubled. Although these thunderstorm-driven fluxes are short-lived (hours to days), they play an outsized role in exporting organic carbon from Arctic rivers. Understanding how these extreme events impact river water, sediment, and carbon dynamics will help predict how Arctic climate change will modify the global carbon cycle.more » « less
- 
            This dataset contains measurements of river discharge, suspended sediment, and organic carbon fluxes in the Canning River, Alaska during one field campaign from 28 June to 10 July 2022 and a second field campaign from 21 July to 2 August 2023. The purpose of this dataset is to demonstrate the impact of summer convective storms on river suspended sediment and particulate organic carbon fluxes in Arctic Rivers. During the 2022 field campaign, we rafted down the Canning River starting on the upper Canning within the headwaters and ending near the mouth at the Beaufort Sea coast. During this campaign, we selected five locations along the active channel to conduct Acoustic Doppler Current Profiler (ADCP) surveys to measure river discharge and sample the river water for suspended sediment and particulate organic carbon, where T1 is the farthest upstream transect and T5 is the farthest downstream. During the 2023 field campaign, we collected instantaneous river discharge measurements of the Canning River in the headwaters at the Marsh Fork Bench Airstrip, at the Staines Airstrip, and on the Staines branch of the Canning River delta. We observed several thunderstorms during these field campaigns, during which the river water level and suspended load increased dramatically, prompting us to sample river suspended sediment during these events. This dataset includes ADCP measurements of river water discharge, suspended sediment concentrations, particulate and dissolved organic carbon concentrations, woody debris flux measurements, and estimates of instantaneous fluxes.more » « less
- 
            Wickert, A. (Ed.)Abstract. Progress in better understanding and modeling Earth surface systems requires an ongoing integration of data and numerical models. Advances are currently hampered by technical barriers that inhibit finding, accessing, and executing modeling software with related datasets. We propose a design framework for Data Components, which are software packages that provide access to particular research datasets or types of data. Because they use a standard interface based on the Basic Model Interface (BMI), Data Components can function as plug-and-play components within modeling frameworks to facilitate seamless data–model integration. To illustrate the design and potential applications of Data Components and their advantages, we present several case studies in Earth surface processes analysis and modeling. The results demonstrate that the Data Component design provides a consistent and efficient way to access heterogeneous datasets from multiple sources and to seamlessly integrate them with various models. This design supports the creation of open data–model integration workflows that can be discovered, accessed, and reproduced through online data sharing platforms, which promotes data reuse and improves research transparency and reproducibility.more » « less
- 
            The Chaos Canyon landslide, which collapsed on the afternoon of 28 June 2022 in Rocky Mountain National Park, presents an opportunity to evaluate instabilities within alpine regions faced with a warming and dynamic climate. Video documentation of the landslide was captured by several eyewitnesses and motivated a rapid field campaign. Initial estimates put the failure area at 66 630 m2, with an average elevation of 3555 m above sea level. We undertook an investigation of previous movement of this landslide, measured the volume of material involved, evaluated the potential presence of interstitial ice and snow within the failed deposit, and examined potential climatological impacts on the collapse of the slope. Satellite radar and optical measurements were used to calculate deformation of the landslide in the 5 years leading up to collapse. From 2017 to 2019, the landslide moved ∼5 m yr−1, accelerating to 17 m yr−1 in 2019. Movement took place through both internal deformation and basal sliding. Climate analysis reveals that the collapse took place during peak snowmelt, and 2022 followed 10 years of higher than average positive degree day sums. We also made use of slope stability modeling to test what factors controlled the stability of the area. Models indicate that even a small increase in the water table reduces the factor of safety to <1, leading to failure. We posit that a combination of permafrost thaw from increasing average temperatures, progressive weakening of the basal shear zone from several years of movement, and an increase in pore-fluid pressure from snowmelt led to the 28 June collapse. Material volumes were estimated using structure from motion (SfM) models incorporating photographs from two field expeditions on 8 July 2022 – 10 d after the slide. Detailed mapping and SfM models indicate that ∼1 258 000 ± 150 000 m3 of material was deposited at the slide toe and ∼1 340 000 ± 133 000 m3 of material was evacuated from the source area. The Chaos Canyon landslide may be representative of future dynamic alpine topography, wherein slope failures become more common in a warming climate.more » « less
- 
            Rivers originating in High Mountain Asia are crucial lifelines for one-third of the world’s population. These fragile headwaters are now experiencing amplified climate change, glacier melt, and permafrost thaw. Observational data from 28 headwater basins demonstrate substantial increases in both annual runoff and annual sediment fluxes across the past six decades. The increases are accelerating from the mid-1990s in response to a warmer and wetter climate. The total sediment flux from High Mountain Asia is projected to more than double by 2050 under an extreme climate change scenario. These findings have far-reaching implications for the region’s hydropower, food, and environmental security.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available